Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Porous graphene and graphite are increasingly utilized in electrochemical energy storage and solar-thermal applications due to their unique structural and thermal properties. In this study, we conduct a comprehensive analysis of the lattice thermal transport and spectral phonon characteristics of holey graphite and multilayer graphene. Our results reveal that phonon modes propagating obliquely with respect to the graphene basal planes are the primary contributors to cross-plane thermal transport. These modes exhibit a predominantly ballistic nature, resulting in an almost linear increase in cross-plane thermal conductivity with the number of layers. The presence of nanoholes in graphene induces a broadband suppression of cross-plane phonon transport, whereas lithium-ion intercalation shows potential to enhance it. These findings provide critical insights into the mechanisms governing cross-plane heat conduction in key graphene-based structures, offering valuable guidance for thermal management and engineering of van der Waals materials.more » « lessFree, publicly-accessible full text available August 25, 2026
- 
            The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Abstract In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates. Remarkably, while the heat flux spectra of dissimilar solids are typically distinct in their bulk forms, they can become nearly identical in superlattices or sandwich structures where the layer thicknesses are smaller than the phonon mean free paths. This phenomenon reflects that the redistribution of heat among phonon frequencies to the bulk distribution does not occur instantaneously at the interface, rather it develops over a distance on the order of phonon mean-free-paths.more » « lessFree, publicly-accessible full text available January 6, 2026
- 
            Abstract Nanomeshes, often referred to as phononic crystals, have been extensively explored for their unique properties, including phonon coherence and ultralow thermal conductivity (κ). However, experimental demonstrations of phonon coherence are rare and indirect, often relying on comparison with numerical modeling. Notably, a significant aspect of phonon coherence, namely the disorder-induced reduction in κ observed in superlattices, has yet to be experimentally demonstrated. In this study, through atomistic modeling and spectral analysis, we systematically investigate and compare phonon transport behaviors in graphene nanomeshes, characterized by 1D line-like hole boundaries, and silicon nanomeshes, featuring 2D surface-like hole boundaries, while considering various forms of hole boundary roughness. Our findings highlight that to demonstrate disorder-induced reduction in κ of nanomeshes, optimal conditions include low temperature, smooth and planar hole boundaries, and the utilization of thick films composed of 3D materials.more » « less
- 
            Abstract Nanoparticles embedded within a crystalline solid serve as impurity phonon scattering centers that reduce lattice thermal conductivity, a desirable result for thermoelectric applications. Most studies of thermal transport in nanoparticle-laden composite materials have assumed the nanoparticles to possess a single size. If there is a distribution of nanoparticle sizes, how is thermal conductivity affected? Moreover, is there a best nanoparticle size distribution to minimize thermal conductivity? In this work, we study the thermal conductivity of nanoparticle-laden composites through a molecular dynamics approach which naturally captures phonon scattering processes more rigorously than previously used analytical theories. From thermal transport simulations of a systematic variety of nanoparticle configurations, we empirically formulate how nanoparticle size distribution, particle number density, and volume fraction affect the lattice thermal conductivity. We find at volume fractions below 10%, the particle number density is by far the most impactful factor on thermal conductivity and at fractions above 10%, the effect of the size distribution and number density is minimal compared to the volume fraction. In fact, upon comparisons of configurations with the same particle number density and volume fractions, the lattice thermal conductivity of a single nanoparticle size can be lower than that of a size distribution which contradicts intuitions that a single size would attenuate phonon transport less than a spectrum of sizes. The random alloy, which can be considered as a single size configuration of maximum particle number density where the nanoparticle size is equal to the lattice constant, is the most performant in thermal conductivity reduction at volume fractions below 10%. We conclude that nanoparticle size distribution only plays a minor role in affecting lattice thermal conductivity with the particle number density and volume fraction being the more significant factors that should be considered in fabrication of nanoparticle-laden composites for potential improved thermoelectric performance.more » « less
- 
            Abstract Embedded ink writing (EIW) is an emerging 3D printing technique that fabricates complex 3D structures from various biomaterial inks but is limited to a printing speed of ∼10 mm s−1due to suboptimal rheological properties of particulate‐dominated yield‐stress fluids when used as liquid baths. In this work, a particle‐hydrogel interactive system to design advanced baths with enhanced yield stress and extended thixotropic response time for realizing high‐speed EIW is developed. In this system, the interactions between particle additive and three representative polymeric hydrogels enable the resulting nanocomposites to demonstrate different rheological behaviors. Accordingly, the interaction models for the nanocomposites are established, which are subsequently validated by macroscale rheological measurements and advanced microstructure characterization techniques. Filament formation mechanisms in the particle‐hydrogel interactive baths are comprehensively investigated at high printing speeds. To demonstrate the effectiveness of the proposed high‐speed EIW method, an anatomic‐size human kidney construct is successfully printed at 110 mm s−1, which only takes ∼4 h. This work breaks the printing speed barrier in current EIW and propels the maximum printing speed by at least 10 times, providing an efficient and promising solution for organ reconstruction in the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
